

Using Civil Cells

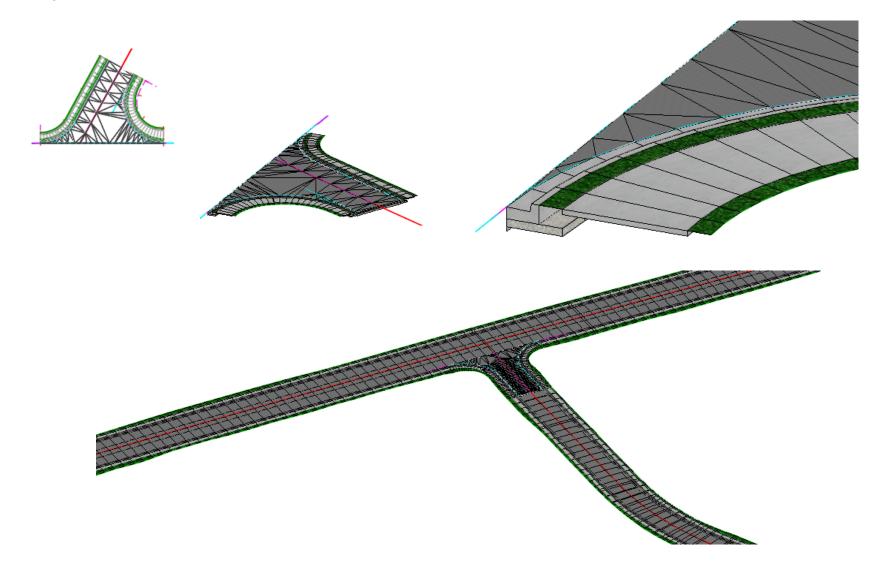
This course is for the **2021 Release 1** version of: OpenRoads Designer CONNECT Edition OpenRail Designer CONNECT Edition

About this Practice Workbook...

- This workbook is designed for use in Live instructor-led training and for OnDemand self study. OnDemand videos for this course are available on the <u>LEARNserver</u> and through CONNECT Advisor.
- This PDF file includes bookmarks providing an overview of the document. Click on a bookmark to quickly jump to any section in the file.
- Both Imperial and Metric files are included in the dataset. Throughout this practice workbook Imperial values are specified first and the metric values second with the metric values enclosed in square brackets. For example: 12.0' [3.4m].
- This course workbook uses the *Training and Examples* WorkSpace and the *Training-Imperial* or *Training-Metric* WorkSet delivered with the software.
- The terms "Left-click", "Click", "Select" and "Data" are used interchangeably to represent pressing the left mouse button. The terms "Right-click" and "Reset" are also used interchangeably to represent pressing the right mouse button. If your mouse buttons are assigned differently, such as for left-handed use, you will need to adjust accordingly.

Have a Question? Need Help?

If you have questions while taking this course, search in *CONNECT Advisor* for related courses and topics. You can also submit questions to the Civil Design Forum on Bentley Communities where peers and Bentley subject matter experts are available to help.


Edition 04-01

Course Level: Fundamental

DO NOT DISTRIBUTE - Printing for student use is permitted

Course Overview

In this course you will learn how to select and place a civil cell into different configurations and using multiple references. Various civil cells are used to model intersections and ramps. In addition to placing civil cells, you will also learn how to make modifications to the civil cells to change the default values for radius and width, as well as move the location and insert points.

Description

In this exercise, you will place a T-intersection civil cell in various planimetric configurations.

Skills Taught

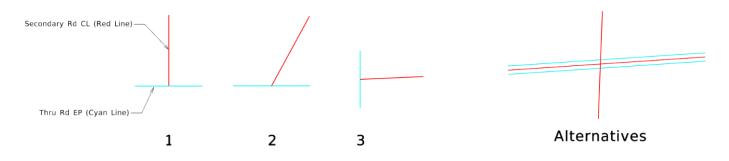
- Review the available Civil Cells via the Pick Civil Cell dialog
- Select a Civil Cell and Place with varying planimetric configurations
- Review a Civil Cell's 3D Model
- Review the model via the Project Explorer
- Edit Civil Cell Components
- Using Alternatives When Placing a Civil Cell

Place the T-Intersection Civil Cell

In this exercise, we will select a civil cell and place it into our design using multiple references and configurations. There are four alignment configurations in the design file.

- 1. Start the software.
- 2. Set the WorkSpace and WorkSet.

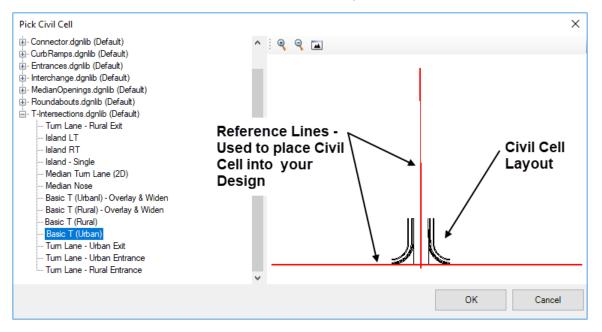
The WorkSpace and WorkSet define standards that are used by the software. The WorkSpace and WorkSet used for this training are installed during the software installation.


Typically, the WorkSpace contains organizational standards and the WorkSet contains project standards.

- a. Select Training and Examples from the *WorkSpace* drop-down menu.
- b. Select **Training-Imperial** [*Training-Metric*] from the *WorkSet* drop-down menu.
- 3. Open an existing file.
 - a. Select Browse.
 - b. Browse to C:\Bentley Training\Using Civil Cells or other folder where you unzipped the dataset files.
 - c. Select the file Starting Civil Cells.dgn [Metric-Starting Civil Cells.dgn].

Note: If you get a message stating "Incompatible Civil Data", this is because the training files are "aligned" to OpenSite Designer. Clicking *Yes* will align the file to the software you are using (OpenRoads Designer or OpenRail Designer). This will have zero impact for the training courses. However, note that in production, upgrading the file will make the file read-only in OpenSite Designer. Full information is available at <u>Bentley Communities - Product Realignment</u>.

We will use the alignments in the file to place a civil cell within the varying design configurations.

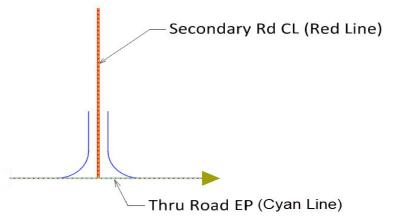

4. In the OpenRoads Modeling WorkSpace, select Model Detailing > Civil Cells > Place Civil Cell.

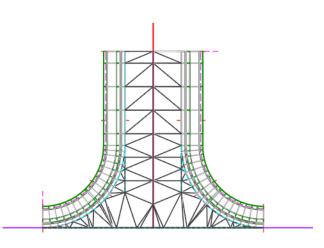
刻 Ope	enRoads Modeling	- 😼 🔚 🔚 -	k = 🔺 📌 🚔 =		Starting Civil Ce	lls.dgn [2D - V8 [DGN] - C
File	Home Terrai	n Geometry Site Co	orridors Model Detailing	Drawing Production	Drawing Utilities	Collaborate	View
© ► 1 0	Element Selection	Place Civil Cell	Apply Surface Linear Template	Create 3D Closed Mesh Elements •	Create Conic Slop Create Transverse M Create Transverse	Align	
Primary	Selection	Civil Cells	3D To	ools	Technical Preview	w	

5. In the Settings dialog, click the **browse** button to open the civil cell library.

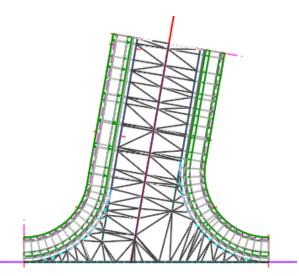
& Plac —	×
Civil Cell Name	

d. Expand the *T-Intersections.dgnlib* to see the civil cells stored in that library.

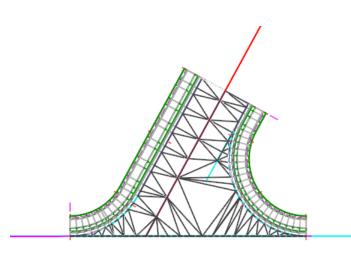

- e. Select the Basic T (Urban) civil cell.
 - The dialog displays the planimetric layout of the selected civil cell with black lines
 - The dialog also shows the reference lines on which the civil cell is based. These are the red lines and represent the baselines that must be present within the design file to place the civil cell.

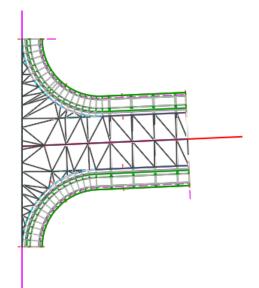

NOTE: The number of reference elements can vary for each civil cell.

f. Click OK.


- 6. For **Configuration 1**, follow the heads up prompts:
 - a. At the *Locate Reference Element: Thru Rd EP (Profiled)(1/2)* prompt, select the **Thru Road EP** element.
 - b. At the *Locate Reference Element: Secondary Rd CL (Profiled)(2/2)* prompt, select the **Secondary Road CL** element.
 - c. At the Select Elements to View Alternatives (Reset to Skip) prompt, right-click to reset.
 - d. At the Select Corridors To Be Clipped (Reset To Complete) prompt, right-click to reset.
 - e. At the Accept Civil Cell Placement prompt, left-click to accept.

The Civil cell is placed.





- 7. We can edit the civil cell placement by editing the reference elements from which it was placed.
 - a. Using the Element Selection tool, select the Secondary Rd CL (the red line).
 - b. Move the end point of the red line by using the element handlers, (the circles and arrows on the selected element). Click on the circle at the end point of the *Secondary Rd CL* element and modify the angle of the intersection.
 - c. The civil cell updates.

8. Let's reinforce our skills: place the Basic T (Urban) *T-Intersection* civil cell for Configurations 2 and 3. The steps are identical to Configuration 1.

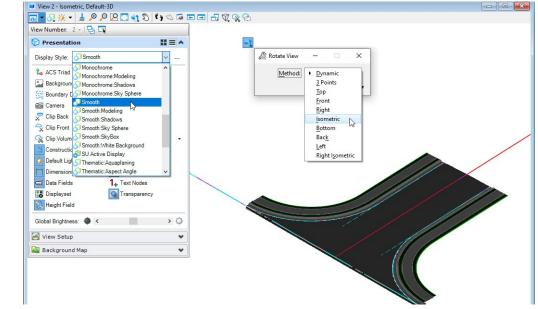
1. View the Intersection models in 3D

6:

6

4

a. Using the view buttons, open View 2.


Saved Views:	Select	14	· · · · ·
Models:	Default	~	
	Model	Name	

View 2 is set to the 3D Model.

NOTE: The model's display properties can be changed under the *View*. *Attributes* menu within View 2. Any View can be set to view any Model via the *View Attributes > View Setup >> Models* list

b. Make *View 2* active and zoom in to review one of the intersection models.

NOTE: You can change the display style and view rotation using *View Attributes > Display Style* and *View Rotation* tools from the menu within View 2.

You may also experiment with the Display Settings.

2. Close View 2 when you have completed examining the display options.

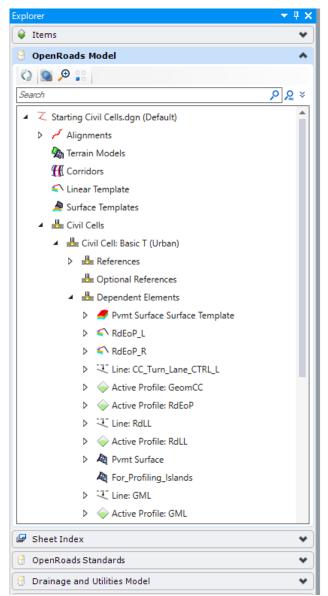
Click *Primary* > **Explorer**.

The Explorer provides a tabular interface into the data structure to review and manage data within the drawing. It provides mechanisms to build link sets to external content, manage CAD standards, and access drawing files and models. These mechanisms are used as a direct interface into the survey, civil design data, and standards.

We will use the Explorer to review the civil cells we have placed into our design.

The Explorer may be docked or floating.

- a. Click the OpenRoads Model group and expand Starting Civil Cells.dgn (Default) [Metric-Starting Civil Cells.dgn (Default] to see the active file's civil features.
- b. Expand the Civil Cells heading.


The civil cells in the active design file are listed.

- c. Continue through the hierarchy and expand Civil Cell: Basic T (Urban)
- d. Expand the Dependent Elements heading.

Civil cells store the "design intent" as well the graphical elements.

Each of the design features that make up the civil cell are listed. Note that the features are preceded with an icon that indicates the tool they were created with. This is a visual indicator that the software remembers how features were created and retains the rules and relationships they were created with.

Editing the components of the Civil Cell is identical to editing elements not part of a civil cell. Updates conform to the tools used to create them (choosing the correct tool when creating is how you communicate your Design Intent).

Use Alternatives When Placing a Civil Cell

You may have noticed the prompts for selecting Alternatives. In this exercise, we'll see why we need alternatives.

Remember that the automatic geometry updates are based on relationships. One subtle, but important property, is offset direction, left or right. This is standard Civil Engineering convention. Left and Right implies a direction to an element, and the software remembers and stores each element's direction.

"Viewing Alternatives" in essence allows you to switch the direction of a new reference element to match the direction of the original reference in the Civil Cell.

1. Click Model Detailing > Civil Cells > Place Civil Cell.

Basic T (Urban) should still be active.

- 2. Following the prompts, place the T-Intersection civil cell on the north side of the Alternatives configuration.
 - a. At the Locate Reference Element: Thru Rd EP prompt, select the Thru Rd North EOP element.
 - b. At the *Locate Reference Element: Secondary Rd CL* prompt, select the **Secondary Road CL** element.

The Preview looks as we expect it should. The directions of the source references and the "destination" references match. No need to View Alternatives.

- c. At the Select Elements to View Alternatives (Reset to Skip) prompt, rightclick to reset.
- d. At the Select Corridors to be Clipped (Reset To Complete) prompt, rightclick to reset.
- e. At the Accept Civil Cell Placement prompt, left-click to accept.

- 3. Following the prompts, place the T-Intersection civil cell on the south side of the *Alternatives* configuration.
 - a. At the Locate Reference Element: Thru Rd EP prompt, select the Thru Rd South EOP element.
 - b. At the Locate Reference Element: Secondary Rd CL prompt, select the Secondary Road CL element.

The Preview is NOT what we want, even though it follows the exact same rules and the exact same way as before. We need to make it go to the south. We need to flip a direction.

Select Elements to View Alternatives (Reset to Skip) c. At the Select Elements to View Alternatives (Reset to Skip) prompt, hover over the secondary road The arrow indicates the direction of the element. We can "reverse" the direction of how the relationship is defined in the new Civil Cell by d. Left-click on the secondary centerline. The arrow changes direction and the preview of Select Elements to View Alternatives (Reset to Skip)

Select Elements to View Alternatives (Reset to Skip) Line: GeomBL Feature: Alignment\Geom_Baseline Active Profile: GeomBL

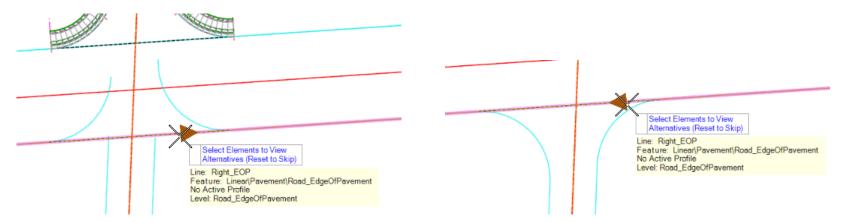
Level: Geom Centerline

selecting the element.

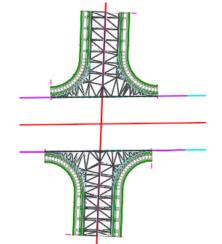
the civil cell updates accordingly.

It's still not what we want.

centerline


e. Hover over the south Edge of Pavement.

Note that the arrow points to the *right*. The centerline and the edge of pavement offsets run from left to right.


The curb returns are still going to the "left" of the edge of pavement (as they did on the north side, and as they did in the original Civil Cell definition).

We will need to have them on the other side, so we need to flip the direction of the edge of pavement.

f. Left-click on the south edge of pavement. This should cause the curb returns to flip to the correct side.

- g. The prompt is still Select Elements to View Alternatives (Reset to Skip), now that the T looks good, right-click to reset and move forward.
- h. At the Select Corridors to be Clipped (Reset To Complete) prompt, right-click to reset.
- i. At the Accept Civil Cell Placement prompt, left-click to accept.

Description

In this exercise, we will edit placed Civil Cells to show the flexibility of the product and its relationship-honoring architecture.

How often is your repetitive engineering always identical? You often need to adjust one or more aspects of the "standard" engineering template (Civil Cell). The purpose of Civil Cells is to save time. Making small or large edits and adjustments is fast and easy.

For example, your Tee Civil Cell may be built with 35' [10m] radii for the curb returns. You may need 25' [8m] curb returns. Maybe your Civil Cell has a 6' sidewalk and you need 4' or no sidewalk. Maybe your Civil Cell has barrier gutters and you need mountable curbs. All of these changes are easy to make.

If you have worked with the geometry tools in the product, you know that the elements are based on engineering rules and values stored in the data structure. The values are visible and editable in the Heads Up Display and in the Properties dialog. Civil Cells are a collection of normal or standard geometry features and their inherent rules and values. As such, the components of a placed Civil Cell are editable, just as if they are "normal" components.

We will work through a series of edits to demonstrate the flexibility of Civil Cells and the ability to edit their components.

Note that should you still find these wide open capabilities of Civil Cells confining, you can use the Drop Civil Cell tool to drop the placed Civil Cell into the components that make it up.

Skills Taught

- Edit an Intersection's Horizontal Geometry
- Remove everything behind a curb
- Swap out Side-slope Tie-ins
- Show that full "corridor-level" editing/modification tools are available, like parametrically constraining a component width

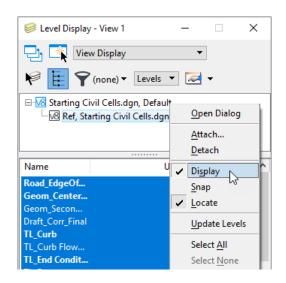
Edit Horizontal Geometry

Here, we'll assume that our new intersections have size requirements that differ from that delivered by the source Civil Cell.

It's important to note that there is a difference between "Changing the Rules" and "Changing the Values of the Rules."

For example, we will widen the right lane of the first Intersection from one lane to two. We will be changing the *Value* of the Offset from 12' [3.6m] to 24' [7.2m].

We will **NOT** be changing the *rules* for the Edge of Pavement from an Offset of the Centerline to a different type of geometry (independent or based on a different offset reference element). This is not particularly difficult, and there are tools to do this, but it's outside the focus of this class. Classes on these concepts include *Beyond Centerline Geometry* and *Introduction to Creating Civil Cells*.

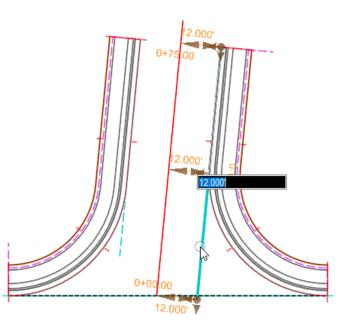

1. Turn off the display of the Referenced 3D model.

One "challenge" in editing Civil Cells is that sometimes it is hard to select what you want to select, especially with full 3D Civil Cells. You may have multiple overlapping 2D features overlapped with multiple overlapping 3D Features in the reference 3D Model. You may have to *right-click* a couple times to select your intended element.

Depending on your needs, you can turn off the Locate of the 3D Model Reference or turn off its Display entirely. You can also turn off levels with graphics you find "unnecessary" right now, like triangles. Construction Class element display can be turned on and off via View Attributes.

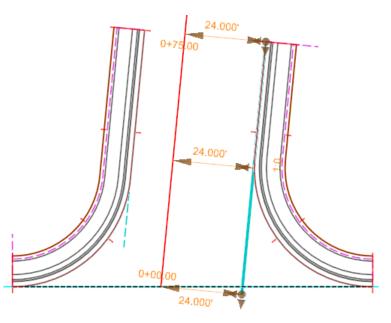
- a. Select *Home > Primary >* Level Display.
- b. Right-click on the Ref, Starting Civil Cells.dgn, Default-3D [Ref, Metric-Starting Civil Cells.dgn, Default 3-D] file.
- c. Left-click on the Display option to toggle the display Off.

The terrain model triangles and other Civil Cell graphics are no longer displayed.



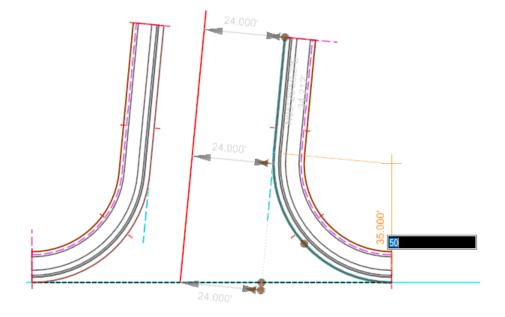
- 2. Widen the Right Lane of **Configuration 1**. (Your graphics may appear different based on how you edited this intersection earlier.)
 - a. Use the Element Selection tool and **Click** on the *right Edge of Pavement* of the first intersection.

Tip: It may be easier to select it by hovering over its "gap". A gap is not visible until you hover over it.

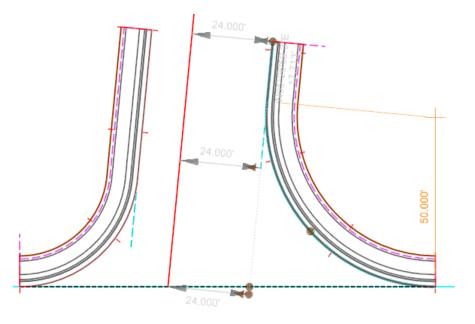

The Edges of Pavement are full-length offsets from the centerline. The curb returns create "gaps" where the edges are trimmed back, but trimmed features are still able to be selected in its "gaps".

b. Once the edge is selected, **click** on the *midpoint Offset text manipulator*.

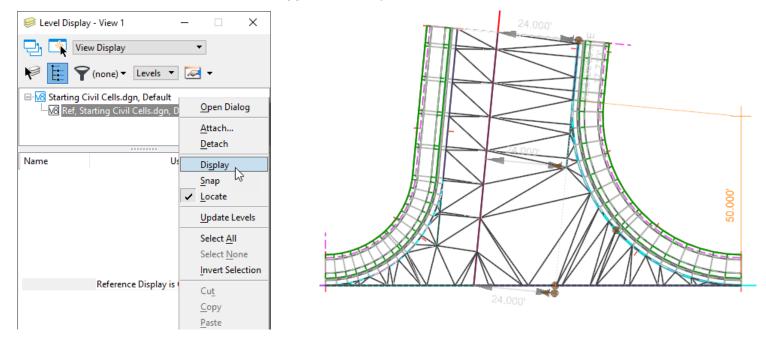
C. Type **24** [7.2] and hit **Return**.


The pavement is widened and all dependent geometry and modeling is updated.

- 3. Change the Curb Return Radius
 - a. Click on the right Edge of Pavement curb return.


This might require multiple right-clicks.

b. Click on the Radius text manipulator.



c. Type **50** [15] and hit **Return**.

The Curb Return Radius and all dependent geometry and modeling is updated.

d. Select *Home > Primary >* Level Display and toggle the display of the 3D model back On.

All the Values used in building the Civil Cell are editable.

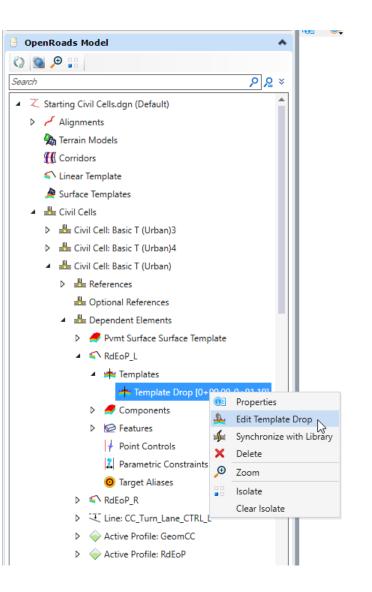
An example might be the cross slope of the side road. The Edge of Pavements were defined as 2% below the centerline. If you wanted to change the cross slope to 1.5%, you could edit that value and everything would be updated automatically.

Profile By Projecting LinEnt3d Simple Slope Rule 🔺			
Slope	-2.00% N		
Vertical Offset	5.000st 12		
Profile Adjustment	None		
Point Selection On Depend	All		

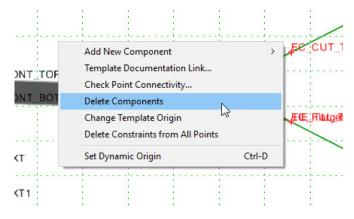
Next we'll tackle some edits more complex than changing numbers.

Drop Everything Outside a Curb

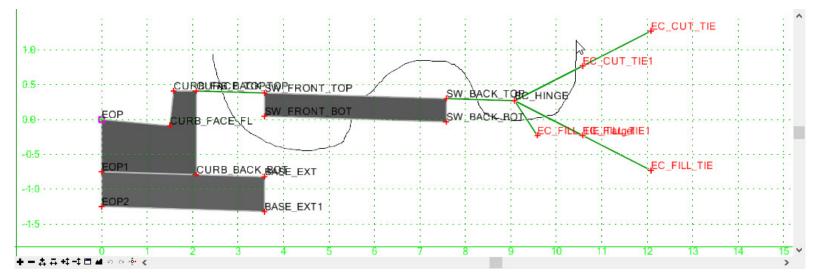
To demonstrate the integration between the data, the graphics, and the interface, let's edit the Civil Cell to drop everything behind the curb along one side of the intersection.


- Q
- Click *Primary* > Explorer.
- 2. In the OpenRoads Model group, expand the folders.
- 3. Under the Civil Cells folder, click on Civil Cell: Basic T (Urban).

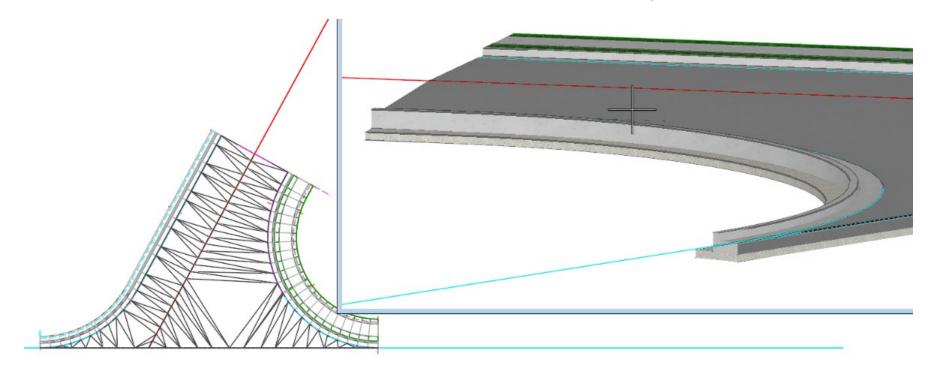
This should be Configuration 1.


- a. Expand the *Dependent Elements* and then expand the **RdEoP_L** *Linear Template*, indicated by the Linear Template Icon.
- b. Expand the *Templates* heading and **right-click** on the *Template Drop* entry.

NOTE: The station range may vary based on the modifications that we made to the reference elements earlier in the exercise.

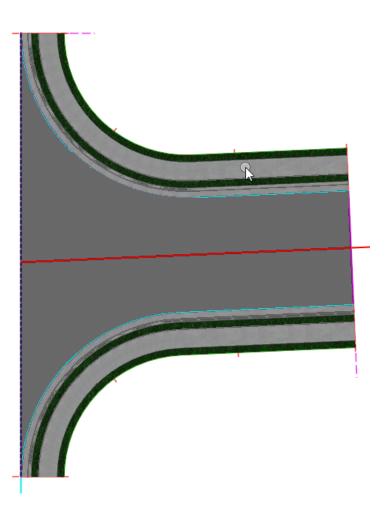

c. Select Edit Template Drop.

- 4. Delete the end conditions and the sidewalk components from the template.
 - a. Right-click in the template window and select Delete Components from the drop down menu.

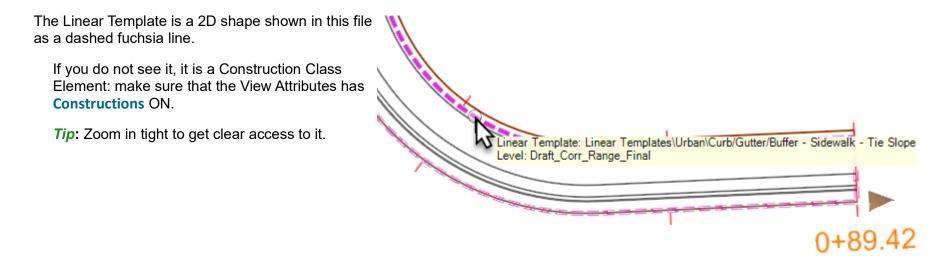


b. Draw a line across each of the elements you wish to delete.

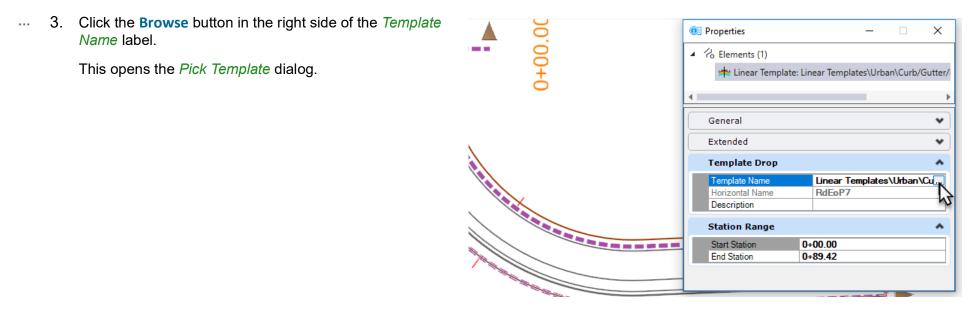
c. Click OK to close the Editing Roadway Designer Template Drop dialog.


5. Review the T-Intersection model. Notice the sidewalk and side slopes have been removed along the left side.

Swap out the Tie-in Solution


Let's assume that a placed Civil Cell is perfect except that one side should tie into the existing ground, but without a sidewalk adjacent to the curb.

The simplest way to do that is to simply switch to a different template in the linear template that makes up the area outside the edge of pavement.


This narrative will use the **Configuration 3** Tee, but you can edit any one you want.

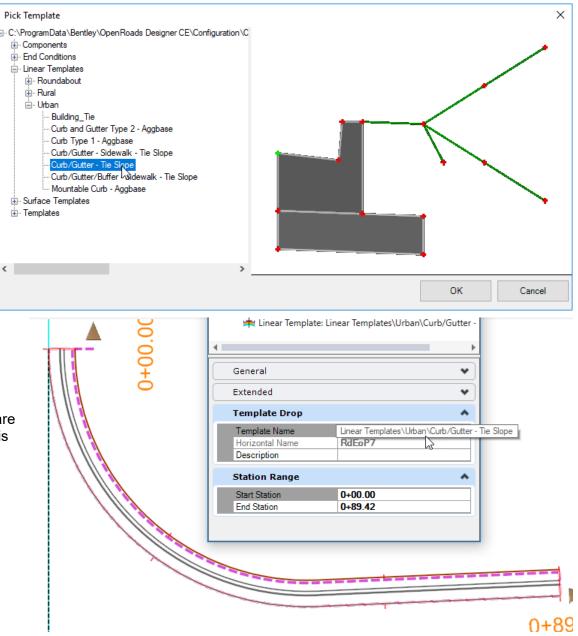
1. Click on a *Linear Template* in View 1, the 2D View.

(1) 2. Open the *Properties* dialog, and expand the **Template Drop** group.

The current template is Linear Templates > Urban > Curb/Gutter/Buffer - Sidewalk - Tie Slope.

4. *Double-click* the **Curb/Gutter** - **Tie Slope** template.

This is similar, but without a sidewalk and the buffer between it and the curb.


This is the Template we'll use, but feel free to review the other templates. The *Curb/Gutter - Sidewalk - Tie Slope*, for example, eliminates only one component, the grass buffer between the curb and the sidewalk.

5. Click OK.

The linear template processes with the new Template.

Note that there is no sidewalk.

Note also that, because this file has no active Terrain, the side slopes that tie into the ground are not drawn. This is true for all the Civil Cells in this drawing.

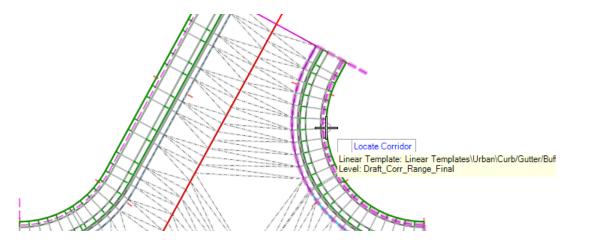
Use Parametric Labels to Change Geometry

Parametric Labels (also known as Parametric Constraints) are Named Relationships between points in a template. Parametric Labels are useful for a variety of reasons, including simplifying managing complex templates, "permanent" geometry changes (within the Edit Template dialog) and overriding Template Geometry for a placed corridor, surface template or linear template.

Parametric Labels can set pavement widths, pavement slopes, pavement thickness, sidewalk width, barrier gutter face height, side slope, etc. The possibilities are endless.

Parametric Labels are also able to provide transitioning geometry. For linear templates the variables have a start and stop value. A Pavement Width Transition looks like this:

Station	Width
0+00	12
10+00	12
12+00	16
99+99	16


We will widen a sidewalk and thicken a pavement layer.

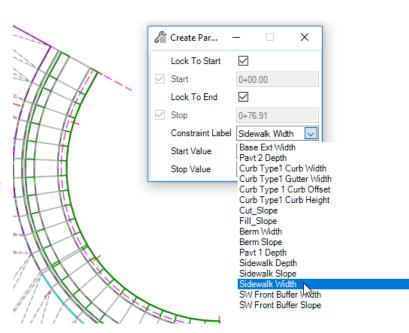
1. Provide a Sidewalk Transition.

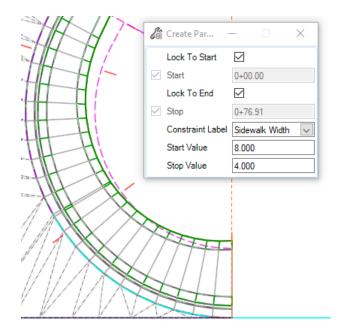
We've selected the **Configuration 2** intersection for this example, but you can select whichever one you want.

- **2**
- a. Click *Corridors* > *Edit* > *Edits* > **Create Parametric Constraint**.
- b. At the *Locate Corridor* prompt, click a **linear template**.

These are outside the curbs, the dashed fuchsia line.

c. In the Settings dialog, open the Constraint Label list.

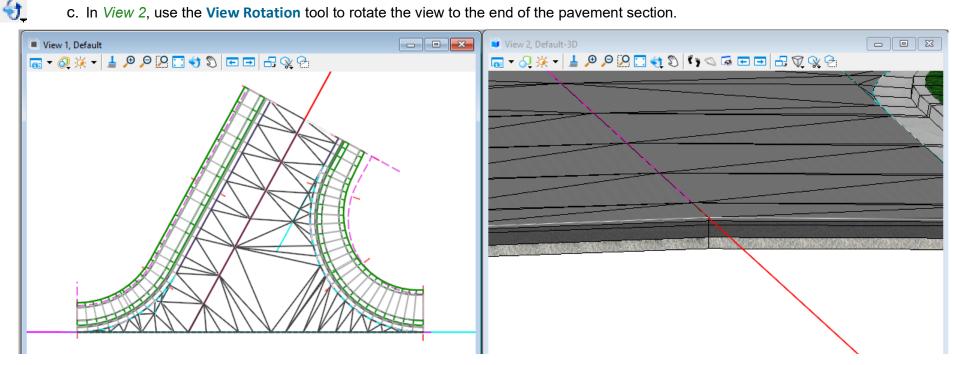

These are the already-defined Constraints in the Linear Template. In a well-managed environment, the names are clear and intuitive.


- d. Select Sidewalk Width.
- e. Set the Lock to Start and Lock to End toggles On.

If you needed to Start or End the transitions somewhere else, you would leave the Locks unlocked and use data points, snaps, or Stations to designate the locations.

- f. For Start Value, type 8 [2.5m].
- g. For Stop Value, type 4 [1m].
- 2. Accept all the prompts, with data points.

The sidewalk is widened.



- Configure your screen views so that the top view of Configuration 2 is visible in View 1, and the end of the 3D pavement section is visible 1. in View 2.
 - a. In an open view, right-click and hold, and then select View Control > 2 Views Plan/3D.

	View Control		1 View
	Сору		2 Views Plan/3D
_			2 Views Plan/XS しょ
6D	Copy Reference		2 Views Plan/Profile
20	Move Reference		2 Views Plan/Superelevation
5	Scale Reference	ň	3 Views Plan/Superelevation/XS
20	Rotate Reference		3 Views Plan/Profile/3D
	Clip Reference		3 Views Plan/Profile/XS
×	Detach Reference		5 views Plan/Profile/X5
			3 Views Plan/XS/3D
١	Set Reference Presentation		4 Views Plan/Profile/XS/3D

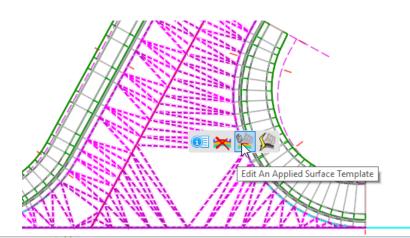
b. In *View 1*, window area so that Configuration 2 is visible.

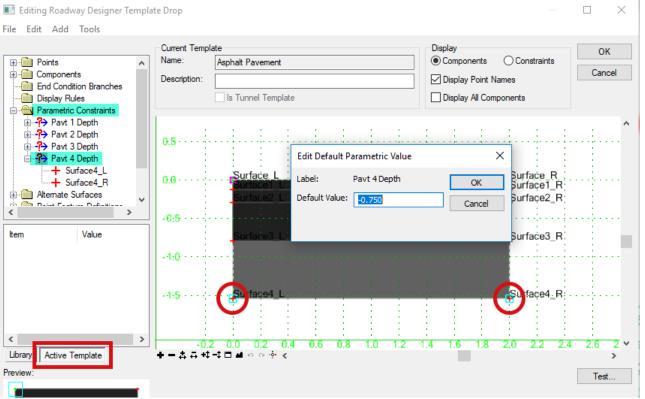
c. In View 2, use the View Rotation tool to rotate the view to the end of the pavement section.

2. Change the Pavement Depth.

a. Click and hover over the civil cell terrain model.

NOTE: You may have to *right-click* so that the surface template is selected.


- b. From the Context Tool Bar, select Edit An Applied Surface Template.
- 3. In the Editing Roadway Designer Template Drop dialog...
 - a. Click the Active Template tab.
 - b. Expand Parametric Constraints.
 - c. Expand and then double-click **Pavt 4 Depth**.


Note the highlighted two points "controlled" by this Constraint

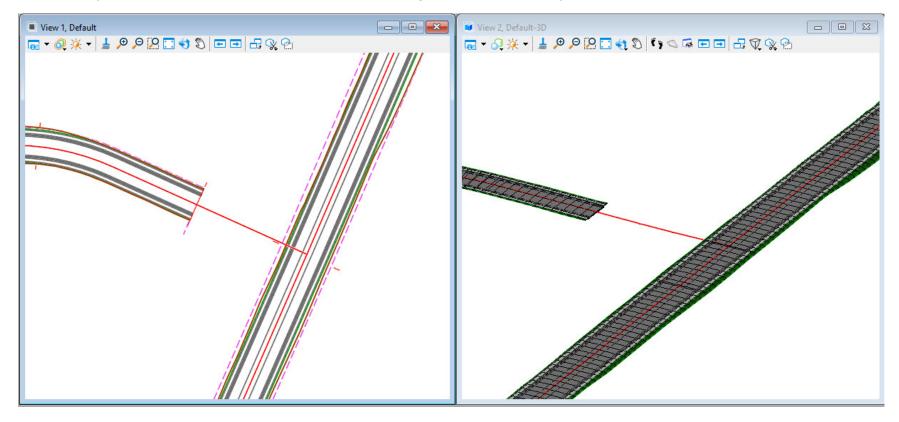
- d. Type -0.75 [-0.25] for Default Value.
- e. Click **OK** to close the *Edit Default Parametric Value* dialog.
- f. Click **OK** to close the *Editing Roadway Designer Template Drop* dialog.

The Depth of the bottom layer of the surface template is updated to the new value.

You can see the change in the 3D view.

Description

In this exercise, you will place a T-intersection civil cell in a more real-world design scenario.


Skills Taught

- Placing an intersection civil cell
- Clipping an existing corridor with the civil cell
- Combining the civil cell model with a roadway corridor model

Place the Civil Cell and Model the Intersection

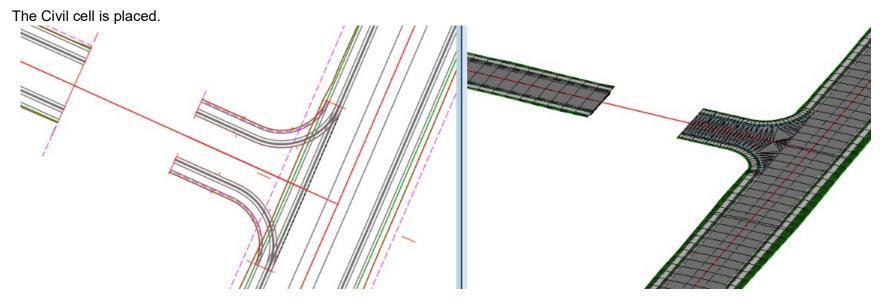
In the following exercise you will use the basic T-Intersection civil cell to construct the model between two intersecting corridors. We will clip the existing corridor when we place the civil cell. Also, it's important to recognize that we will place the civil cell in View 1, the 2D view, and the 3D model will be constructed from it's placement.

1. Select File > Browse and open the file *T-Intersection.dgn* [Metric-T-Intersection.dgn] from C:\Bentley Training\Using Civil Cells or other folder where you unzipped the dataset files. There is an existing terrain model already attached to this file.

- **2.** Click Model Detailing > Civil Cells > Place Civil Cell.
 - 3. Select the civil cell in the *T-Intersections.dgnlib* folder named **Basic T (Urban)**.

- 4. In View 1, follow the heads up prompts:
 - a. At the Locate Reference Element: Thru Rd EP (Profiled) (1/2) prompt, select EOP_L for the Thru Road EP element.

Take care to pick the edge of pavement, not one of the curb lines.


- b. At the Locate Reference Element: Secondary Rd CL (Profiled) (2/2) prompt, select ForestCt for the Secondary Road CL element.
- c. At the Select Elements to View Alternatives (Reset to Skip) prompt, right-click to reset.
- d. At the Select Corridors to be Clipped (Reset To Complete) prompt, click the LondonRd corridor.

After selecting the LondonRd corridor, the Select Corridors to be Clipped (Reset To Complete) prompt returns allowing the selection of multiple corridors.

e. Right-click to reset and complete the Corridor Clipping.

The Civil Cell can automatically clip the LondonRd corridor where it overlaps the civil cell. In some situations, such as if the corridor exists in a referenced dgn file, the corridor may need to be clipped manually.

f. At the Accept Civil Cell Placement prompt, left-click to accept.

NOTE: Civil cell clipping does not clip out the 2D graphics of the corridor in View 1. In the image above, View 1 (2D view) on the left represents the visual interface in which we interact with the model.

- 5. Review the civil cell placement. Verify that your intersection is aligned properly as shown in the image above.
 - If the cell is placed incorrectly, you may have mistakenly selected the wrong reference element during the placement.
 - To undo the civil cell placement, select *Undo* from the Quick Access tool bar or key in *CTL+z*.
 - Place the civil cell again.

NOTE: The graphic handles displayed with the civil elements, such as the corridors and template drops, as well as other features can be defined as Construction Class elements. Their display can be turned On or Off for clarity via the Constructions toggle in the View Attributes menu. The definition of these elements as construction elements is specified within the WorkSpace and can be changed.

6. Remove the gap between the intersection and the existing two-lane corridor ForestCt.

Description

In this exercise, you will place sidewalk ramps within the intersection model using a civil cell.

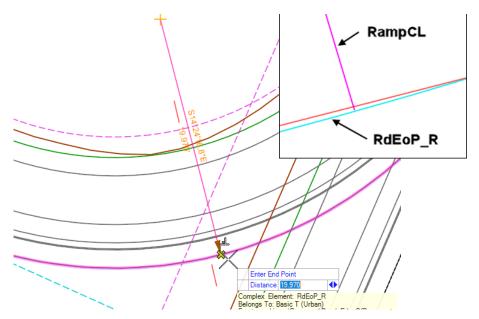
Skills Taught

- Drawing the Centerline required for the Ramp Civil Cell
- Placing a Sidewalk Ramp Civil Cell
- Clipping the Sidewalk from under the Ramp
- Moving the Sidewalk Ramp within the model

Draw the Sidewalk Ramp Centerline

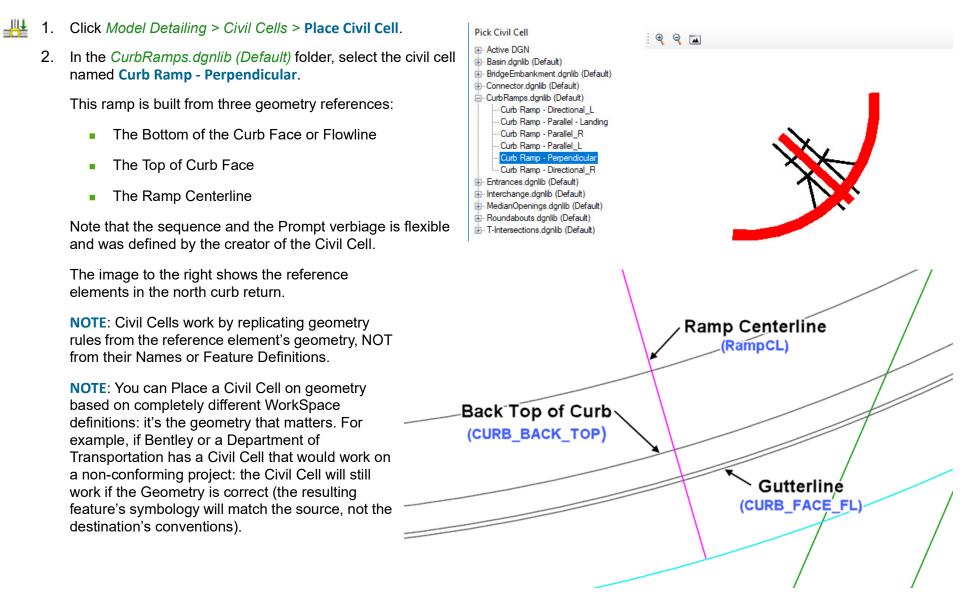
This civil cell contains three reference elements and requires they be identified in the design model as the civil cell is placed. The gutter line and the back of sidewalk exist - they were created as part of the Civil Cell, but the ramp centerline does not. We will create a ramp centerline to be the basis for our ramp location within the model.


- 1. Select *Home > Primary >* Level Display and turn On level *Civil_Cell_Pts_Labels*.
- 2. Click Geometry > Horizontal > Lines > Line Between Points.
 - a. In the settings dialog, select or enter the following:
 - Feature Definition: Linear > Miscellaneous > Geom_Civil_Cell_Control
 - Name: RampCL
 - b. Left-click the *Center* snap and snap to the center of Pt 1 to place the *Start Point* near the middle of the north curb return of the intersection.
 - c. Left-click the Perpendicular snap.
 - d. And **left-click** to place the line perpendicularly along the Complex Element **RdEoP_R** (cyan line). You may need to zoom in closely to see the cyan line or toggle off the Constructions in View Attributes.


NOTE:

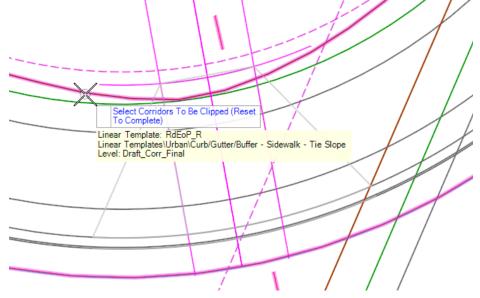
As an alternate technique, we could have placed the ramp centerline using the Place Smartline or Place Line drawing tools. These tools also honor the Perpendicular snap.

The difference is that the drawing tools have no memory of a Perpendicular relationship.

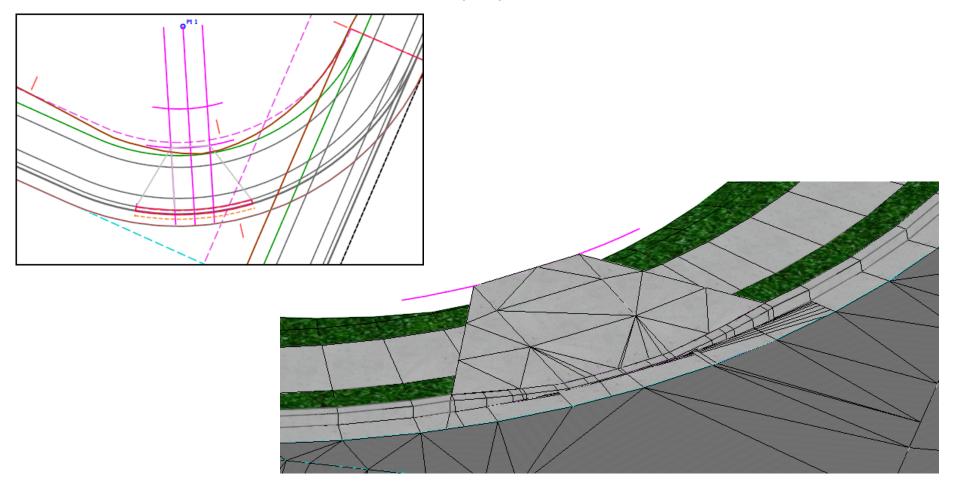

The Line Between Points command and other Designer product tools remember that the centerline has a Perpendicular relationship with the edge of pavement and honors the relationship during a change in geometry.

Select and Place the Ramp Civil Cell into the Intersection Model

We will select the referenced civil cell and place it into our intersection model.

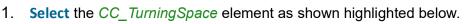


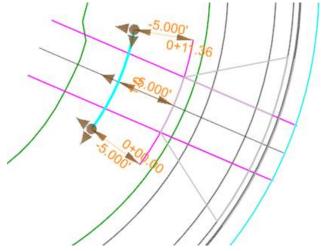
- 3. Follow the heads-up prompts:
 - a. At the Locate Reference Element: Gutterline (Profiled) (1/3) prompt (the first of three prompts for reference), select CURB_FACE_FL for the Gutterline element. NOTE: if you mistakenly pick the Top of Curb, your ramp elevations will be incorrect. **NOTE:** "(Profiled)" is simply a convention the Civil Cell creator adopted to indicate to the user that the element must have an active Profile (so that it has a vertical Locate Reference Element: Gutterline (Profiled) (1/3) reference). Complex Element: CURB_FACE_FL Belongs To: Basic T (Urban).RdEoP_R Feature: Linear\Template Points\Curb\TL_Curb Face FL Active Profile: ProfileByTemplate Level: TL Curb b. At the Locate Reference Element: Back Top of Curb (Profiled) (2/3) prompt, click the CURB BACK TOP element (it is just inside the gutter line). Locate Reference Element: Back Top of Curb (Profiled) (2/3) Complex Element: CURB_BACK_TOP -Belongs To: Basic T (Urban).RdEoP_R Feature: Linear\Template Points\Curb\TL_Curb Back Top Active Profile: ProfileByTemplate Level: TL_Curb

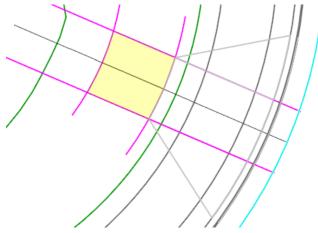

c. At the Locate Reference Element: Ramp CL (Placed from EP to beyond Ramp Tie) (3/3) prompt, click on the ramp centerline element RampCL we recently placed. Locate Reference Element: Curb Ramp CL (Placed from EP to beyond Ramp Tie) (3/3) Line: RampCL Feature: Linear\Miscellaneous\Geom_Civil_Cell_Control No Active Profile Level: Geom_Civil_Cell_Control d. At the Select Elements to View Alternatives (Reset to Skip) prompt, click Reset because the ramp schematic looks correct. e. At the Select Corridors to clip (Reset to Complete) prompt, click Left-Click on the Linear Template: RdEoP R, then Reset to accept the clipping. f. Left-Click to Accept the civil cell placement Select Corridors To Be Clipped (Reset To Complete)

The sidewalk ramp is placed into the model.

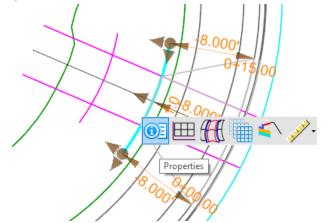
NOTE: If the civil cell's placement is not correct, undo the command by going to *Undo* from the Quick Access tool bar or key in *CTRL*+ *z*. You can also delete the Civil Cell from the *Explorer*.



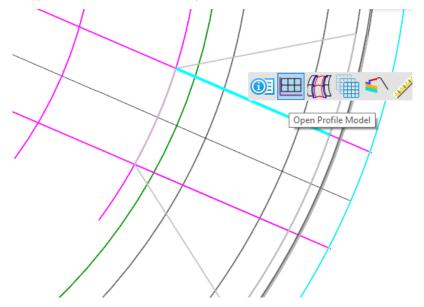

The final clipped ramp should look similar to the following images.

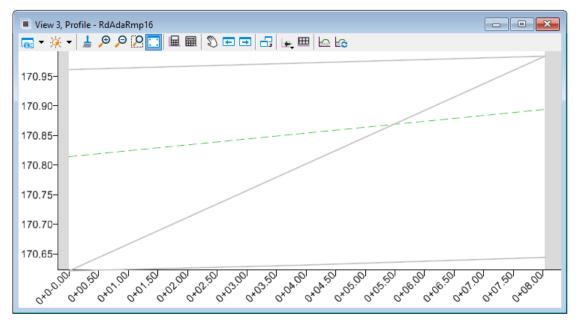

Review and Edit the Cell Landing Area

Review the results of the ramp placement and modify the ramp slopes and depth.



2. Observe the -5.00' [-1.500m] dimension. This element is meant as a guide for the landing area beyond the ramp. The landing area is shown highlighted below.

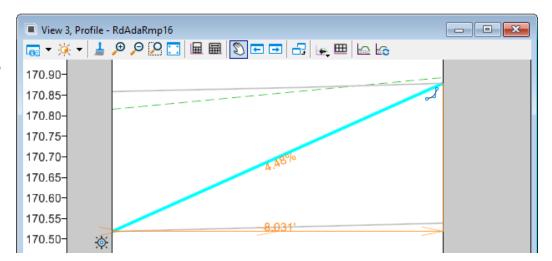

3. Select the element CC_Slope-Ctrl as shown highlighted below and choose Properties from the context menu.


4. Change the Slope from 2% to -2% to match the slope of the template through the sidewalk from the Back Top of Curb (CURB_BACK_TOP).

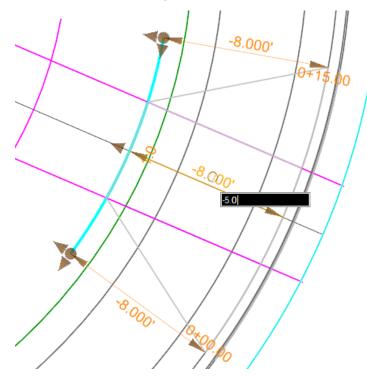
	Length	11.358'
	Length Along	15.005'
>	Start Point	512722.847',634865.185'
>	End Point	512727.297',634875.528'
	Length	11.358'
	1 1 11	I X
	Feature Name	CC_Slope-Ctrl
	Feature Definition	Geom_Civil_Cell_Control
1.2	1	1 X
	Slope	-2%
	Vertical Offset	0.000'
	Profile Adjustment	None
	Point Selection On D	e All
~	110 1 341 1	
>	Start Point	512722.847,634865.
>	End Point	512727.297.634875.
-	. / /// /	
	Method	Single Offset
	Offset	-8.000'
	Start Distance	0+00.00
	End Distance	0+15.00
	Ratio	1:0
	Spiralized	No

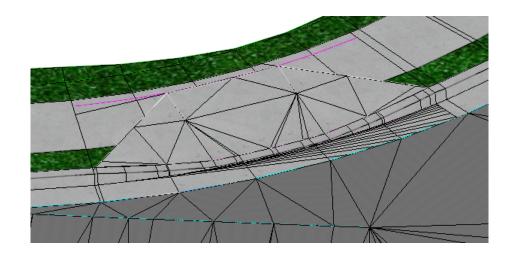
5. Select the highlighted element shown below (*RdAdaRmp16* or similar) and then choose **Open Profile Model** from the context menu.

6. Left-click in View 3 when prompted to Select or Open View.

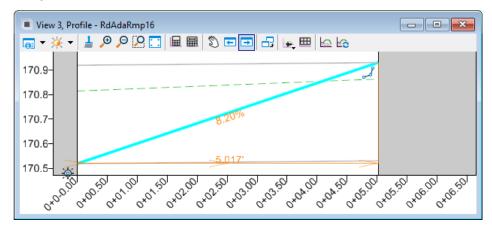


R

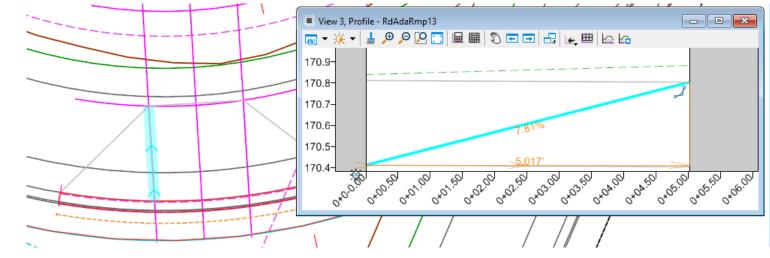

7. Select the Active Profile element in *View 3* (shown highlighted below) to review its slope. Your slope will most likely vary slightly from what is shown in the manual because of the different location of the Ramp CL that you created earlier.


In the next two steps, we will show you how to control this slope to achieve the slope you desire.

8. In the plan view, select the *CC-Slope-Ctrl* element again and change its value from -**8.0'** [-2.4m] to -**5.0'** [-1.5m].



In a later step, we will adjust the sidewalk to match the up properly with the ramp.



9. Select the Active Profile element again in *View 3* and review the slope.

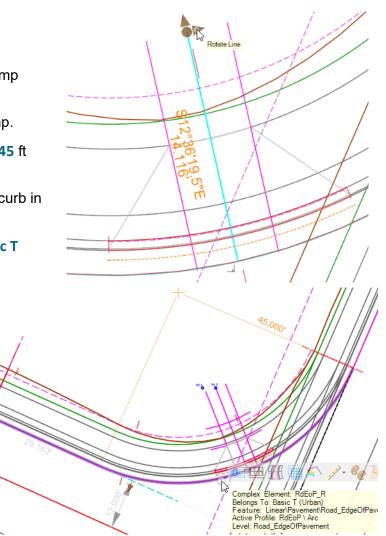
10. Although optional for this class, you would also open the profile view of the plan view element opposite of the one just reviewed as shown below to check its slope as well.

11. Close View 3.

Copyright © 2021 Bentley Systems, Incorporated

Move the Sidewalk Ramp and Edit Curb Return

The Sidewalk Ramp was built centered on the ramp center line feature. What happens if we move the center line? What happens if the curb return radius changes?


- . Move the sidewalk ramp.
 - a. Click the Ramp Centerline
 - b. **Click** onto the circle or the "sideways arrow" at the end of the end of the Ramp centerline.
 - c. Move this to a new position by *snapping* to Pt 2 to relocate the line and ramp.
- Click on the Edge of Pavement curb return (RdEoP_R). Change the Radius to 45 ft [15m].

Notice the ramp slides along with the centerline and that the ramp follows the curb in event of geometry changes (= automatic updates).

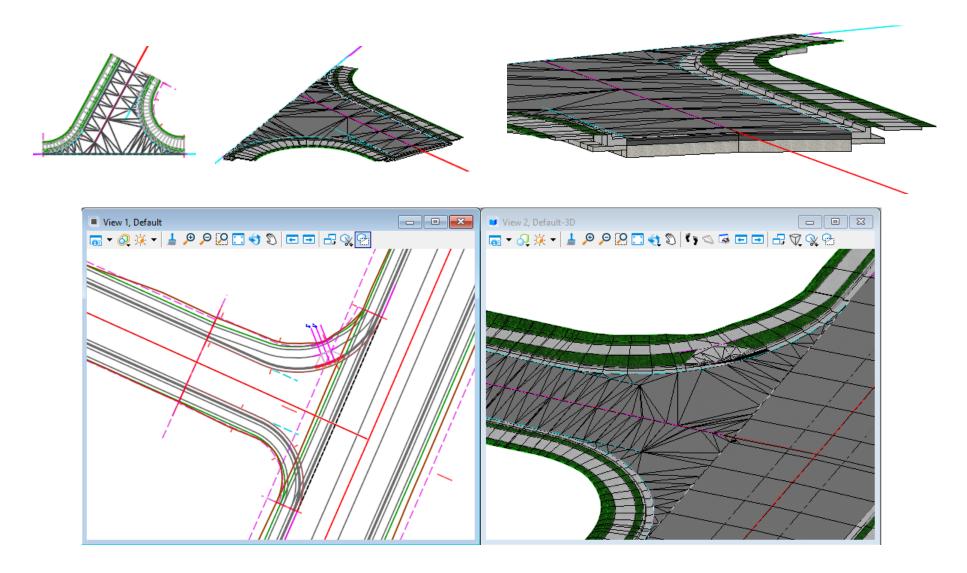
- 3. Instructor Note: You may need to re-clip the London Rd. corridor and the Basic T (Urban) Civil Cell to clean up the model.
 - a. Use the Corridor Clipping tools to remove the London Rd. clipping reference from the **Basic T (Urban)** Civil Cell.

- b. Re-clip London Rd. by using Add Clipping Reference.
- c. You may also need to re-clip the **Curb Ramp** Civil Cell and the **Linear Template: RdEoP_R** to clean up the model.
- d. Follow same steps as **3a.** and **3b.** to re-clip.

Skills Assessment

The questions below will test your retention of the skills covered in this course.

- 1. When a Civil Cell is selected for placement the preview window shows red and black lines. Select the statement that best describe these lines..
 - a. The Red lines represent the primary elements and the Black lines represent the secondary elements.
 - b. The Red lines repesent reference elements that must exist and be selected when the civil cell is placed and the Black lines represent elements that are created by the civil cell.
 - c. The Red lines represent elements in the civil cell that can be changed after placement, the Black lines cannot be changed.
- 2. A civil cell will automatically adapt to the geometry even if it is created in a different orientation or direction than was used when defining the civil cell..
 - a. True
 - b. False
- 3. A Corridor in a reference file can be clipped when placing a civil cell..
 - a. True, Any corridor can be clipped when placing a civil cell.
 - b. False, Only corridors in the active file can be clipped when placing a civil cell.


Skills Assessment - Answers

The answers to the skills assessment questions are highlighted below.

- 1. When a Civil Cell is selected for placement the preview window shows red and black lines. Select the statement that best describe these lines.
 - a. The Red lines represent the primary elements and the Black lines represent the secondary elements.
 - b. The Red lines represent reference elements that must exist and be selected when the civil cell is placed and the Black lines represent elements that are created by the civil cell.
 - c. The Red lines represent elements in the civil cell that can be changed after placement, the Black lines cannot be changed.
- 2. A civil cell will automatically adapt to the geometry even if it is created in a different orientation or direction than was used when defining the civil cell.
 - a. True
 - b. False
- 3. A Corridor in a reference file can be clipped when placing a civil cell.
 - a. True, Any corridor can be clipped when placing a civil cell.
 - b. False, Only corridors in the active file can be clipped when placing a civil cell.

Summary

In this course you have learned how to select and place a civil cell into different configurations using multiple references. Various civil cells were used to model intersections and ramps. In addition to placing civil cells, you also learned how to make edits to the civil cells to change the default values for radius and width, as well as how to move the location and insert points.

